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Soliton stability has been examined in the cascaded transmission system based on the standard monomode
fibers with in-line semiconductor optical amplifiers, sliding filters, and saturable absorbers~SAs!. Stabilization
of the pulse propagation in such a system can be achieved under a proper choice of the filter and SA
parameters. Conditions of the stable propagation including a critical sliding rate are determined. Impact of the
saturable absorber on the soliton stability has been investigated.@S1063-651X~96!50210-2#

PACS number~s!: 42.81.Dp, 42.65.Tg

Optical transmission systems using wide-bandwidth semi-
conductor optical amplifiers~SOAs! operating at 1.3mm
have been put into the focus of intensive studies recently
@1–6#. Standard monomode fibers~SMFs! exploiting in most
of the installed networks have minimal dispersion at this
wavelength. Utilization of in-line SOAs at 1.3mm in the
optical communication systems based on SMFs takes advan-
tage of both operating close to the zero-dispersion point and
the wide availability of semiconductor amplifiers. Among
the negative factors inherent in such systems should be men-
tioned the gain saturation, an additional chirp resulting from
the SOA action, and the relatively~in comparison with
1.55 mm carrier wavelength! higher value of fiber losses at
1.3 mm. The performance of transmission systems operating
at 1.3 mm in links based on SMFs and using in-line SOAs
has been studied in Refs.@4–6#.

It is an important feature of semiconductor amplifiers that
they are quickly saturated and for high bit rate transmission
could not recover before the next optical pulse in the pattern
reaches the amplifier. A guiding-center soliton that is a natu-
ral nonlinear mode of the transmission system with periodic
linear amplification is not a stable asymptotic state of the
communication system with SOAs. An input pulse in the
form of the soliton of the nonlinear Schro¨dinger equation
~NLSE! evolves into a structure that differs significantly
from the fundamental soliton. In other words, such a trans-
mission system is perturbed and unstable for an input signal
in the form of the fundamental soliton. It should be pointed
out, however, that for transmission over several hundred ki-
lometers this instability does not play a crucial role. The
instability can be suppressed by the installation of either fil-
ters or acousto-optic modulators to achieve long-distance,
stable transmission. Use of the sliding filters leads to the
stabilization of the pulse propagation@2,3#. It is known for
the system with periodic linear~nonsaturated! amplification
that the introduction of a saturable absorber~SA! allows one
to suppress the nonsoliton part of the optical signal and to
achieve ultralong stable soliton propagation@7,8#. In this pa-
per we investigate the impact of a saturable absorber on the
pulse transmission in links exploiting SMFs and in-line
SOAs. We investigate the stability of the NLSE soliton
propagation and determine a critical sliding rate in the sys-
tem with saturated gain.

Optical pulse propagation down the optical transmission
line is governed by the equation~see, e. g.,@6#!
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HereT is the retarded time;E is normalized such thatuEu2
represents optical power inW; b2 is the chromatic dispersion
parameter;s5(2pn2)/(l0Aef f) is the nonlinear coefficient;
there n2 is the nonlinear refractive index,l051.3 mm is
the carrier wavelength, andAef f is the effective fiber area.
Operator Ĥ5 (1/2p) (k51
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3exp(2ivt)dv describes filtering effect. HereE(v,Z)
5*E(t,Z)exp(ivt)dt, the filter transfer functionH(v)
5@11 i2(v2v f)/B#21 with a filter bandwidthB and v f
varying along the fiber in the case of sliding filtering. In
the parabolic approximation the filtering effect can be
described asĤE5c1E1c2( i ] t2v f)
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N d(Z2Zk){exp@0.5(12 iaH)h(t)#21} repre-
sents the losses and periodic amplification by SOAs,
Zk5kZa ( i5k,...,N) are the semiconductor amplifier loca-
tions, the loss coefficient~in km21! g50.05ln(10)a ac-
counts for the fiber attenuation along an amplifier span;a is
fiber loss in dB/km. The point action of the semiconductor
amplifier is given under reasonable assumptions~see@9# for
details! by Eout5exp@0.5(12 iaH)h(t)#Ein . The gain coef-
ficient is found from a solution of the equation

dh

dt
5
g0La2h

T1
2@exp~h!21#

uEinu2

«sat
. ~2!

Here g0 is a small-signal gain,La is the amplifier length,
T1 is the spontaneous carrier lifetime,aH is the Henry factor
or the linewidth enhancement factor, respectively, and«sat is
the saturation energy of the amplifier.

A typical set of practical parameters of the transmission
line and SOA operating at 1.3mm is the following: the
chromatic dispersion parameterb2'21 ps2/km; the non-
linear refractive indexn252.6310220m2/W, the carrier
wavelength l051300 nm; the effective fiber area
Aef f574 mm2; the lossa50.4 dB/km; amplification dis-
tanceZa550 km; spontaneous lifetimeT15200 ps; satura-
tion energy«sat56 pJ; Henry factoraH55.
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When the amplification distanceZa is much smaller than
the characteristic dispersion lengthZD5t0

2/ub2u, the aver-
aged pulse propagation along such a transmission system can
be described by a distributed model@2,3#:
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Here time is normalized to the characteristic pulse widtht0
@which is related to the full width at half maximum~FWHM!
of a soliton bytFWHM.1.763t0]; uAu2 is normalized to the
pulse input power P0; z is normalized to theZD ,
d5ZD@ lnG0 /(2Za)2g# is the excess gain;G05exp(g0La) is
the linear gain of the amplifier;b52/(B2Za) is the distrib-
uted filtering strength, the term withf accounts for the slid-
ing effect ~see for details, e.g.,@7#!; gain saturation coeffi-
cient r5(12G0

21)P0t0 /(2za«sat). We introduce here an
additional termsuAu2A modeling the action of the fast satu-
rable absorber ~see, e.g., @10,7,8#!. In the parameter
s5a0I st f /ts , a0 is the linear absorption,t f is the decom-
position time of the exitons,ts the recombination time of
free carriers, andI s is the saturation intensity.

Equation~3! can be applied also to the problem of a pulse
generation in the mode-locking laser systems using saturable
absorber, dispersive, and Kerr elements@10,12,13#. For Eq.
~3!, in contrast to the NLSE, a stable solitonlike solution that
presents a natural nonlinear mode of the system is not
known. In the practical implementation an input signal in the
form of Gaussian shape or the fundamental soliton~soliton
of the NLSE! is usually used. Therefore, first, we consider
how the soliton of the NLSE evolves in such a system in the
practical case of small values of parameters on the right-
hand-side of Eq.~3!. Our aim is to find conditions under
which propagation of the fundamental soliton can be stabi-
lized even in the presence of perturbative terms on the right-

hand side of Eq.~3!. Following the standard technique~see,
e.g., @7#! one can describe the adiabatic evolution of the
NLSE soliton under the combined action of the filtering, am-
plification by SOA, and a saturable absorber, assuming slow
z dependence of the soliton parameters,

A~z,t !5hsech@h~ t2t0!#exp@2 ik~ t2t0!1 if~z!#. ~4!

Evolution of the parametersh andk is given by
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Equilibrium states (h̃,k̃) are solutions of the set of equa-
tions,
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To study the stability of the stationary points given by
Eqs.~7! and~8! let us linearize Eqs.~5! and~6! on the back-
ground of stationary point (h̃,k̃): h5h̃1dh, k5 k̃1dk with
dk! k̃, dh!h̃ and assume thatdk,dh;exp(2lz). It is easy
to find that the linear stability of the stationary points is
determined by the positiveness of the eigenvaluesl satisfy-
ing the equation
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Solutions of this equation are given by
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Both roots are positive if

r1 4
3 h̃~b2s!.0

and

4b2k̃212raHb k̃2h̃b@r1 2
3 h̃~b22s!#,0.

This leads to the following limiting condition on the slid-
ing rate:

aHr2AaH
2 r 214bh̃@r1 2

3 h̃~b22s!#

<3 f<aHr1AaH
2 r 214bh̃@r1 2

3 h̃~b22s!# . ~11!

This inequality gives limits in which the sliding rate can
vary to achieve stable soliton propagation. The obtained re-
quirement generalizes the condition on the sliding rate found
in Refs. @11# and @3# for the system without gain saturation
and saturable absorber:f<bh̃A8/27.

Adjusting the sliding parameterf to the action of the SOA
( f5 2

3aHr ), it is possible to compensate exactly the fre-
quency shift induced by SOA@3#. Stationary point with
k̃50 and h̃51 corresponds to the soliton that does not
change its parameters during propagation along the transmis-
sion line. It is easy to find that the stability condition
l1,2.0 can be satisfied, namely,l154b/3.0 and
l252r1 4

3(b22s) is also positive if 4s,2b13r .
Excess gain is given by

d5r1 1
3 ~b22s!. ~12!

R3126 54S. K. TURITSYN



From this one can see that the impact of the saturable ab-
sorber on the pulse dynamics is that SA reduces excess gain
~parameterd) which is responsible for the instability of the
continuous waves~CWs!. Note that, in contrast to the case of
amplification by means of linear~nonsaturated! amplifiers, in
the problem that we consider there exists a limitation on the
value of the excess gaind from below (d>r /2).

Stabilization of the soliton propagation by means of slid-
ing filters and saturable absorber allows us to enchance sig-
nificantly a transmission capacity of the communication lines
using SMFs and SOAs. It should be pointed out that the
instability of the NLSE soliton does not mean that in this
range of parameters stable pulse propagation is impossible.
Linear instability of the NLSE soliton can be a first stage of
transition from the initial state to the natural mode of the
system under consideration. We would like to note here
some new possibilities introduced by the SA in the problem
of the existence of the stable localized solution of Eq.~3!.

Let us consider the evolution of the energy integral
P5*2`

1`uAu2dt.

dP

dz
52dP22bE uAtu2dt12sE uAu4dt2rP2. ~13!

Evidently, the energy balance (dP/dz50) must be achieved
on the stationary solution. The action of the SA corresponds
to the additional positive term on the right-hand side of Eq.
~13!. The interesting issue which arises considering Eq.~13!
is that in the presence of the SA balance is possible even
without the restrictiond.0 that was the only possibility to
achieve the equilibrium in the cases50. Thus, introduction
of the SA allows the existence of a localized solution with
suppressed instability of the CW.

To make this possibility clear, consider now the localized
solution of Eq.~3! ~with f50) having the particular form

A~z,t !5A0sechS ~ t2z/v !

T0
DexpH i Faz2Dv~ t2z/v !

2bln coshS ~ t2z/v !

T0
D G J , ~14!

where the soliton widthT0, amplitudeA0, velocity v, fre-
quency shiftDv, and chirp parameterb are functions ofd,
b, s, r andaH .
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Two evident requirementsA0
2.0 andT0

2.0 determine re-
gions of possible parameters for which solution in the form
~14! exists. Because parametersb and s are positive, we
consider only the first quadrant withb>0 ands>0 in the
plane (b,s). There are three regions in the plane (b,s). The
first region corresponds to the solutions with

2b2s,0, b5
3

2
3
112bs
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112bs

2b2s G2.0,

d,bDv2. ~21!

The second branch of solutions is in the region
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113A114b2
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2b2s G2,0,
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The third region is determined by the conditions

0,s,
2b

113A114b2
,

b52
3

2
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2b2s G2,0,

d.bDv2. ~23!

The obtained conditions are sufficient for existence of
the solutions in the form~14!. This solution is a generaliza-
tion of the soliton found in Refs.@14# and @2# to the case
of the system with saturable absorbers. This is the so-
called autosoliton, which means that soliton parameters
are determined by medium only@by the external parameters
in Eq. ~3!# in contrast to the NLSE soliton. The important
new feature introduced by the SA is that the excess gain
parameterd is not necessarily positivefor all types of the
localized solution described above. There exist branches,
given by Eqs.~21! and ~22! with negatived for which the
instability of the CW is automatically suppressed. The curve
s52b/(113A114b2) is a line of singularity separating
solutions with d2bdv2.0 and autosolitons with
d2bdv2,0. The description of the obtained solutions is
very close to a classification of the solitons of the complex
Ginzburg-Landau equation developed in Ref.@15#. The role
of such a special singular line for the case of the complex
Ginzburg-Landau equation was pointed out by Akhmediev
and co-workers in Ref.@15# ~see also@16#!. We would like
to note that the parameterr occurs in the equations de-
termined autosoliton amplitudeA0 and width T0 only in
the constructiond2bdv2. Therefore, the singularity line
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s52b/(113A114b2) coincides with a special curve
found in Ref.@15#. Without the SA, an asymptotic solution
can be stabilized by use of the sliding filters@2,3#. Forming
an asymptotic pulse is asymmetric in time and cannot be
described by the symmetric solution~14!. It is interesting to
compare an asymptotic pulse that emerges in the cases50
with the dissipative soliton described in Ref.@13#. In @13# it
was considered a particular case of Eq.~3! with
b5 f5s5aH50 and it has been found that the dissipative
soliton is an asymptotic state of the system. An asymptotic
solution of Eq.~3! with s50 will be analyzed in more detail
in a forthcoming publication.

In conclusion, by perturbation theory we analyzed the sta-
bility of the optical soliton propagation in communication

systems using SMFs, periodic amplification by SOAs, and
soliton control by means of sliding filters and saturable ab-
sorbers. A critical sliding rate has been determined that al-
lows stabilization of the soliton propagation along such a
system. It was shown that exploitation of the saturable ab-
sorber can reduce excess gain, which is responsible for the
instability of the CW. Introduction of the SA also allows
existence of the soliton solution in the region of parameters
where instability of the CW is suppressed.
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